Finite Groups with a Faithful Real-valued Irreducible Character Whose Square Has Exactly Two Distinct Irreducible Constituents

نویسندگان

  • Emmanuel Zhmud
  • E. ZHMUD
چکیده

We study the groups satisfying the property stated in the title.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Character Square

We study the finite groups with an irreducible character χ satisfying the following hypothesis: χ2 has exactly two distinct irreducible constituents, and one of which is linear, and then obtain a result analogous to the Zhmud’s ([8]).

متن کامل

Groups whose set of vanishing elements is exactly a conjugacy class

‎Let $G$ be a finite group‎. ‎We say that an element $g$ in $G$ is a vanishing element if there exists some irreducible character $chi$ of $G$ such that $chi(g)=0$‎. ‎In this paper‎, ‎we classify groups whose set of vanishing elements is exactly a conjugacy class‎.

متن کامل

Finite p-groups with few non-linear irreducible character kernels

Abstract. In this paper, we classify all of the finite p-groups with at most three non linear irreducible character kernels.

متن کامل

On Squares of Irreducible Characters

We study the finite groups G with a faithful irreducible character whose square is a linear combination of algebraically conjugate irreducible characters of G. In conclusion, we offer another proof of one theorem of Isaacs-Zisser. There are a few papers treating the finite groups possessing an irreducible character whose powers are linear combinations of appropriate irreducible characters, for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010